Think about what would happen when attackers start using the power of deep learning and machine learning to their advantage.

Nadav Maman, CTO | May 2020
What Does an AI-Based Attack Look Like?
AI Vs. AI: 3 Main Use Cases

- **AI-Based Cyber-Attacks**: The malware operates AI algorithms as an integral part of its business logic.

- **Adversarial Learning**: The use of “malicious” AI algorithms to subvert the functionality of “benign” AI algorithms.

- **AI-Facilitated Cyber-Attacks**: The malicious code and malware running on the victim’s machine does not include AI algorithms, however AI is used elsewhere in the attacker’s environment and infrastructure:
 - On the server side
 - In the malware creation process.
AI-based Cyber-attacks

- The malware operates AI algorithms as part of its business logic.
- In the past, such decisions could only be made manually by a human, as opposed to today, where it’s able to be generated automatically.
AI-Based Cyber-Attacks

Example

- **Deep Locker**

- An encrypted ransomware which autonomously decides which computer to attack based on a face recognition algorithm.
AI-Based Cyber-Attacks

Deep Locker

- **Benign Application**
- **Existing Malware**
- **Target Attributes**

AI-POWER CONCEALMENT

Evading
- static, dynamic, manual analysis

SECURITY ANALYSIS

DISTRIBUTION & EXECUTION

- Execution at non-target
 - Benign Behavior
- Execution at target
 - Malicious Behavior

BENIGN-LOOKING MALWARE
AI Vs. AI

AI-Based Cyber-Attacks

Adversarial Learning

AI-Facilitated Cyber-Attacks
Malicious code and malware running on the victim’s machine does not include AI algorithms, however AI is used elsewhere in the attacker’s environment and infrastructure; be it on the server side, in the malware creation process etc.

- Infostealer – Sends endless data, which will be hard to sort based on human resources and classify it using AI.

- Images leaked from iPhone cloud – Assuming that you find a vulnerability and you would like to look for specific interesting images out of it, using image classification deep learning models.
2. AI Facilitated Cyber-attacks

Weaponizing data science for social engineering: Automated E2E spear phishing on Twitter

High value targets on Twitter → Feature extraction → Selects best clustering model

Automated spear phishing

Click rate measurement
AI Vs. AI

AI-Based Cyber-Attacks

Adversarial Learning

AI-Facilitated Cyber-Attacks
3. Adversarial Attacks - Placing a Sticker in a Strategic Position on a Stop Sign
Adversarial Attacks
Which One is Which?
Adversarial Machine Learning

What options do attackers have to attack ML?

Learning Phase

Training Data \rightarrow Machine Learning Algorithm

Predictions Phase

New Data \rightarrow Model \rightarrow Predictions

Adversary
Poisoning Attacks

- For example, try to pollute training data to trick the classifier into marking specific malicious binaries as benign.

As shown in the figure, between the end of Nov 2017 and early 2018, there were at least four malicious large-scale attempts to skew Gmail filter off-track, by reporting massive amounts of spam emails as not spam.
Evasion Attacks

Attacker can try to:

1. The attacker is trying to get a persistence on the machine
2. Retraining with adversarial examples, or “adversarial training” (RAD), by manipulating and changing the samples
Machine Learning – Feature Extraction

Dogs vs Cats

- Ear = 9cm
- Eyes = 4.2cm
- Nose = 11.42cm

Benign vs Malicious

- Counting
- Floating points
- Normalization
- Binary features
- Heuristics
How Feature Extraction can be Manipulated

- **Counting** → Create additional sections
- **Floating points** → Change time-stamps, pad the file with additional data
- **Normalization** → Add plain data
- **Binary features** → Pack malicious functionalities, create certificate
- **Heuristics** → Additional evasion techniques

...
Deep Instinct - Deep Learning Cybersecurity Platform

Any Threat
- **File based threats:** PE, PDF, Office, fonts, TIFF, RTF, SWF, Mach-O, Macro, APK, Shellcodes
- **File-less based threats:** Macro, Scripts, Code injection, Dual-use
- Ransomware
- Exploits
- Spyware

Multi-Layered Protection
- **Pre-execution**
 - Deep Static analysis
 - D-Cloud
- **On-execution**
 - Deep Behavioral analysis
- **Post execution**
 - Deep Classification
 - Forensics & Remediation

Independent 3rd Party Tests

Anywhere
- **Cross-OS**
 - Endpoint
 - Mobile
 - Server
 - Networks
- **Anywhere**
 - Online / Offline
 - VDI
 - Cloud / On-Premises
- **Any Environment**
 - Multi-Tenancy

Technology Partnerships

Certification
- **SE Labs**

Compliance & Regulation

ZERO-TIME THREAT PREVENTION
PLATFORM POWERED BY DEEP LEARNING

PREVENT • CLASSIFY • CONTAIN
Do You Really Have a Defense Strategy in Place?

AI-based cyber-attacks

In the past such decisions could only be made manually by a human, as opposed to today, where it’s able to generate decisions automatically.

Adversarial attacks against the usage of AI are possible, but not feasible

<table>
<thead>
<tr>
<th>The attacker should know which features to use and know the model</th>
<th>Nearly all published adversarial attacks are for image recognition, not for cyber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse engineer the model or use a predictive engine.</td>
<td>Different size of files, etc.</td>
</tr>
<tr>
<td>Much easier to attack predictable, high level features such as those used by our competitors.</td>
<td>You can’t simply modify a raw byte (like you change a pixel’s color) and expect the code to work.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>We have defense methods implemented in our framework</th>
<th>Part of our IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>However, some of the research is available online.</td>
<td></td>
</tr>
</tbody>
</table>
THANK YOU

Nadav@DeepInstinct.com

CTO